Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Chong-Min Zhong, ${ }^{\text {a* }}$ Ya-Jie Zuo, ${ }^{\text {b }}$ Hua-Shu Jin, ${ }^{\text {a }}$ Tian-Chi Wang ${ }^{\text {a }}$ and Shuang-Quan Liu ${ }^{a}$
${ }^{\text {a Department of Chemistry, Harbin Normal }}$ University, Harbin 150080, People's Republic of China, and ${ }^{\mathbf{b}}$ Library, Harbin Normal
University, Harbin 150080, People's Republic of China

Correspondence e-mail:
zhong_cm@yahoo.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.026$
$w R$ factor $=0.053$
Data-to-parameter ratio $=25.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Bis(1-n-butyl-3-methylimidazolium) tetrabromopalladate(II)

In the title ionic compound, $\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{PdBr}_{4}\right]$, the asymmetric unit consists of one square-planar $\left[\mathrm{PdBr}_{4}\right]^{2-}$ anion and two 1-n-butyl-3-methylimidazolium, $[\mathrm{Bmim}]^{+}$, cations, where the imidazolium rings are planar and the $\beta \mathrm{C}$ atoms of the butyl substitutes are bent away from the ring planes at angles of 111.9 (3) and $112.3(4)^{\circ}$. One methyl H atom and three ring H atoms of one of the two $[\mathrm{Bmim}]^{+}$cations form $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds ($2.81-2.92 \AA$ and $157-165^{\circ}$), whereas the other cation is only involved in one hydrogen bond. Br atoms involved in hydrogen bonds are trans in the $\left[\mathrm{PdBr}_{4}\right]^{2-}$ ion.

Comment

Ionic liquids based on the 1-butyl-3-methylimidazolium cation are important alternatives to water as solvents for two phase catalytic oligomerization, hydrogenation and hydroformylation of olefins by transition metal complexes (Einloft et al., 1996; Chauvin et al., 1996). It has been shown that $[\mathrm{Bmim}]_{2}\left[\mathrm{PdCl}_{4}\right]$ in $[\mathrm{Bmim}] \mathrm{BF}_{4}$ (Bmim is 1-n-butyl-3-methylimidazolium) is a selective catalyst precursor for hydrodimerization of 1,3-butadiene (Dullius et al., 1998). Crystallographic studies of Pd^{2+}-containing ionic liquids based on the widely used $[\mathrm{Bmim}]^{+}$cation are helpful for elucidating the local ordered structure around the Pd centres of catalytic systems in ionic liquids. The present paper reports the synthesis and crystal structure determination of the title compound, $[\mathrm{Bmim}]_{2}\left[\mathrm{PdBr}_{4}\right]$, (I).

(I)

The asymmetric unit of (I) (Fig. 1) consists of two imidazolium cations and one $\left[\mathrm{PdBr}_{4}\right]^{2-}$ counter-ion. The tetrabromopalladate anion is essentially square planar, with the bond angles at Pd in the range 89.51 (2)-178.62 (2) ${ }^{\circ}$, and $\mathrm{Pd}-$ Br bond distances ranging from 2.4285 (5) to 2.4415 (5) \AA, which are comparable with those found for other $\left[\mathrm{PdBr}_{4}\right]^{2-}$ containing compounds (Neve et al., 1998). The imidazolium rings of the two cations are planar, and bond distances and angles are found to be almost the same as those in [Bmim $]_{2}\left[\mathrm{PdCl}_{4}\right]$ (Dullius et al., 1998). The $\beta \mathrm{C}$ atoms of the

Figure 1
The molecular structure of (I), with 50% probability ellipsoids (arbitrary spheres for H atoms), showing the atom-labelling scheme. The dashed line indicates the $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bond. The two [Bmim] cations are labeled as 1 and 2 .

Figure 2
A packing diagram of (I), viewed along the a axis. Dashed lines indicate $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds.
butyl chains are twisted out of the planes of the imidazolium rings at angles of 112.3 (4) and 111.9 (3) ${ }^{\circ}$. The conformational features of the cations that differentiate them are the torsion angles around C5-C6 [176.9 (5) ${ }^{\circ}$] and $\mathrm{C} 13-\mathrm{C} 14\left[68.2(5)^{\circ}\right]$ (Table 1). The all-gauche conformation at the C13-C14 bond of cation 2 is in contrast with the anti conformations at all the $\mathrm{C}-\mathrm{C}$ bonds of the alkyl chain of cation 1 , which projects the chain away from the imidazolium ring. The conformation of cation 1 is the same as in monoclinic polymorph II of [Bmim]Cl (Holbrey et al., 2003).
The different conformations of the cations result in different hydrogen-bonding patterns. In cation 1 , there is only one hydrogen bond ($\mathrm{C} 4-\mathrm{H} 4 B \cdots \mathrm{Br} 1$; see Table 2 for details). However, there are four hydrogen bonds in cation 2 , involving three ring H atoms and one methyl H atom. The hydrogenbonding patterns are similar to those observed in $[\mathrm{Bmim}]_{2}-$ $\left[\mathrm{CoCl}_{4}\right]$ (Zhong et al., 2006). The hydrogen bonds between cation 2 and $\left[\mathrm{PdBr}_{4}\right]^{2-}$ link them together, forming a three-
dimensional network (Fig. 2), with the weakly hydrogenbonded cations 1 lying in between the mesh.

Experimental

The title compound was synthesized by refluxing a mixture of [Bmim] $\mathrm{Br}(0.38 \mathrm{mmol}, 83 \mathrm{mg})$ and $\mathrm{PdBr}_{2}(0.188 \mathrm{mmol}, 50 \mathrm{mg})$ in acetonitrile (5 ml) in a Schlenk tube for 24 h . The resulting red solution was then filtered and the filtrate was concentrated and left to crystallize at 283 K , with the addition of diethyl ether. Suitable crystals were obtained by recrystallization from dichloromethanediethyl ether (1:1) at room temperature (m.p. 396.5-397.3 K). Elemental analysis, calculated for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{Br}_{4} \mathrm{~N}_{4} \mathrm{Pd}$: C 27.28, H 4.29, N 7.95\%; found: C 27.15, H 4.37, N 7.90\%.

Crystal data

$$
\begin{aligned}
& \left(\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{PdBr}_{4}\right] \\
& M_{r}=704.46 \\
& \text { Orthorhombic, Pna2 } \\
& a=21.6041(8) \AA \\
& b=9.1708(3) \AA \\
& c=12.1753(4) \AA \\
& V=2412.25(14) \AA^{3}
\end{aligned}
$$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.940 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=7.40 \mathrm{~mm}^{-1} \\
& T=294(2) \mathrm{K} \\
& \text { Rod, purple-red } \\
& 0.20 \times 0.20 \times 0.18 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2005)
$T_{\min }=0.230, T_{\max }=0.264$
24651 measured reflections
5993 independent reflections 4817 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=28.3^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.053$
$S=1.02$
5993 reflections
231 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0383 P)^{2}\right. \\
& +1.1806 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\max }=0.34 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.38 \mathrm{e}^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& 2851 \text { Friedel pairs } \\
& \text { Flack parameter: } 0.02 \text { (2) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }_{\mathrm{A}},{ }^{\circ}\right)$.

$\mathrm{Pd} 1-\mathrm{Br} 3$	$2.4285(5)$	$\mathrm{Pd} 1-\mathrm{Br} 2$	$2.4388(4)$
$\mathrm{Pd} 1-\mathrm{Br} 1$	$2.4342(4)$	$\mathrm{Pd} 1-\mathrm{Br} 4$	$2.4415(5)$
$\mathrm{Br} 3-\mathrm{Pd} 1-\mathrm{Br} 1$	$178.62(2)$	$\mathrm{Br} 1-\mathrm{Pd} 1-\mathrm{Br} 4$	$90.668(16)$
$\mathrm{Br} 1-\mathrm{Pd} 1-\mathrm{Br} 2$	$89.738(16)$		
$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-179.6(4)$	$\mathrm{N} 4-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$-177.0(4)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-176.9(5)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$68.2(5)$

Table 2
Hydrogen-bond geometry (${ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 B \cdots \mathrm{Br}^{\mathrm{i}}$	0.97	2.88	$3.678(5)$	140
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{Br}^{\mathrm{ii}}$	0.93	2.86	$3.755(5)$	163
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{Br}^{\mathrm{iii}}$	0.93	2.81	$3.687(5)$	157
$\mathrm{C} 12-\mathrm{H} 12 A \cdots \mathrm{Br} 3^{\mathrm{iv}}$	0.97	2.81	$3.730(5)$	159
$\mathrm{C} 16-\mathrm{H} 16 B \cdots \mathrm{Br} 1$	0.96	2.92	$3.854(5)$	165

Symmetry codes: (i) $x, y, z+1$; (ii) $-x,-y+1, z+\frac{1}{2}$; (iii) $-x+\frac{1}{2}, y-\frac{1}{2}, z+\frac{1}{2}$; (iv) $x, y-1, z$.

metal-organic papers

The methyl H atoms were constrained to an ideal geometry, with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, but the methyl group was allowed to rotate freely about its $\mathrm{C}-\mathrm{C}$ bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.97-1.00 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Bruker, 2000).

This study was sponsored by the Scientific Research Foundation for Returned Overseas Chinese Scholars of the Education Office of Heilongjiang Province (No. 1151hq018).

References

Bruker (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chauvin, Y., Mussmann, L. \& Olivier, H. (1996). Angew. Chem. Int. Ed. Engl. 34, 2698-2700.
Dullius, J. E. L., Suarez, P. A. Z., Einloft, S., de Souza, R. F., Dupont, J., de Fischer, J. \& Cian, A. (1998). Organometallics, 17, 815-819.
Einloft, S., Dietrich, F. K., de Souza, R. F. \& Dupont, J. (1996). Polyhedron, 15, 3257-3259.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Holbrey, J. D., Reichert, W. M., Nieuwenhuyzen, M., Johnston, S., Seddon, K. R. \& Rogers, R. D. (2003). Chem. Commun. pp. 1636-1637.

Neve, F., Crispini, A., Armentano, S. \& Francescangeli, O. (1998). Chem. Mater. 10, 1904-1913.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2005). SADABS. Version 2.10. University of Göttingen, Germany.
Zhong, C.-M., Sasaki, T., Kobayashi, A. J., Fujiwara, E., Kobayashi, A., Tada, M. \& Iwasawa, Y. (2006). In preparation.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

